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Abstract—Research in astronomy is undergoing a major
paradigm shift, transformed by the advent of large, automated,
sky-surveys into a data-rich field where multi-TB to PB-sized
spatio-temporal datasets are commonplace. For example the
Legacy Survey of Space and Time is about to begin deliver-
ing observations of >1010 objects, including a database with
>4 × 1013 rows of time series data. This volume presents a
challenge: how should a domain scientist with little experience
in data management or distributed computing access data and
perform analyses at PB-scale?

We present a possible solution to this problem built on
(adapted) industry standard tools and made accessible through
web gateways. We have i) developed Astronomy eXtensions
for Spark, AXS, a series of astronomy-specific modifications to
Apache Spark allowing astronomers to tap into its computational
scalability, ii) deployed datasets in AXS-queriable format in
Amazon S3, leveraging its I/O scalability, iii) developed a deploy-
ment of Spark on Kubernetes with auto-scaling configurations
requiring no end-user interaction, and iv) provided a Jupyter
notebook, web-accessible, front-end via JupyterHub including
a rich library of pre-installed common astronomical software
(accessible at http://hub.dirac.institute).

We use this system to enable the analysis of data from the
Zwicky Transient Facility, presently the closest precursor survey
to the LSST, and discuss initial results. To our knowledge,
this is the first application of cloud-based scalable analytics
to astronomical datasets approaching LSST-scale. The code is
available at https://github.com/astronomy-commons.

I. INTRODUCTION

Today’s astronomy is undergoing a major change. Histori-
cally a data-starved science, it is being rapidly transformed by
the advent of large, automated, digital sky surveys into a field
where terabyte and petabyte datasets are routinely collected
and made available to researchers across the globe.

Two years ago, the Zwicky Transient Facility (ZTF; [1])
began a three-year mission to monitor the Northern sky.
With a large camera mounted on the Samuel Oschin 48-inch
Schmidt telescope at Palomar Observatory, ZTF is able to
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monitor the entire visible sky almost twice a night. Generating
about 30 GB of nightly imaging, ZTF detects approximately
1,000,000 variable, transient, or moving sources (or alerts)
every night, and makes them available to the astronomical
community. Towards the middle of 2022, a new survey, the
Legacy Survey of Space and Time (LSST; [2]), will start
operations on the NSF Vera C. Rubin Observatory. The LSST
has a mirror almost seven times larger than that of the ZTF,
which will enable it to search for fainter and more distant
sources. Situated in northern Chile, the LSST will survey
the southern sky taking ∼1, 000 images per night with a 3.2
billion-pixel camera that is capable of imaging an area 40x
the size of the full moon in a single exposure. The stream
of imaging data (∼6PB/yr) collected by the LSST will yield
repeated measurements (∼100/yr) of over 37 billion objects,
for a total of over 30 trillion measurements by the end of the
next decade. These are just two examples, with many others at
similar scale either in progress (Kepler, Pan-STARRS, DES,
GAIA, ATLAS, ASAS-SN; [3]–[7]) or planned (WFIRST,
Euclid; [8], [9]). They are being complemented by numerous
smaller projects (≲ $1M scale), contributing billions of more
specialized measurements.

The main products of these surveys are astronomical cat-
alogs. At the highest level1, astronomical catalogs are large
(≳ 1010 rows) collections of objects – such as galaxies,
stars, planets, asteroids, and more – identified in acquired
imaging. They are accompanied by 1-3 orders of magnitude
larger tables of individual observations (≳ 1013 rows) that
store measurements of received flux, position, shape, and other
properties of the object. Both tables are information rich and
fairly wide: for example, the object table in Pan-STARRS
contains 129 columns while the detection table is 58 columns
wide.

However, this 10-100x increase in survey data output has

1This is a rather simplified description; a typical catalog will have dozens
of additional tables recording numerous calibration and other metadata.
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not been followed by commensurate improvements in tools
and platforms available to astronomers to manage and analyze
those datasets. Most survey-based studies today are performed
by navigating to archive websites, entering (very selective)
filtering criteria to download “small” (∼10s of millions of
rows; ∼10GB) subsets of catalog products. Those subsets
are then stored locally and analyzed using custom routines
written in high-level languages (e.g., Python or IDL), with
the algorithms generally assuming in-memory operation. With
the increase in data volumes and subsets of interest growing
towards the ∼100GB-1TB range, this mode of analysis is
becoming infeasible.

Beyond the shear input size, the nature of astronomical
investigations itself is changing. In the first two decades of
survey-driven science, archived data has often been seen as a
shortcut to observations: instead of requesting telescope time,
one could “observe” a region of sky with a Structured Query
Language (SQL) query. Thus, the typically requested and
analyzed data subsets were relatively small. (Previous studies
show frequencies of Sloan Digital Sky Survey queries follow
a f−1 power law [10], [11].) The next decade, however, is
expected to be weighted towards studies examining the whole
dataset: performing large-scale classification (including using
machine learning techniques), clustering analyses, searching
for exceptional outliers, or measuring faint statistical signals
[12]. The change is driven by the needs of the big scientific
questions of the day. For some — such as the nature of dark
energy — we are reaching the limits of measurement precision
or the numbers of objects that can be observed: utilization of
all available data and improved statistical treatments are the
only way to an answer.

For all these reasons, the traditional “subset-download-
analyze” paradigm in place today is expected to break down in
the early 2020’s. In this new environment, how does a domain
expert access the data of interest and write/run analyses? How
do they write a code simultaneously fitting a billion+ stars for
distances and the interstellar dust distribution? What software
should an astronomer use to orchestrate running a light-curve
classifier using state-of-the-art machine learning methods that
robustly handles a trillion data points?

II. A PLATFORM FOR USER-FRIENDLY SCALABLE
ANALYSIS OF LARGE ASTRONOMICAL DATASETS

We address these challenges by building a general platform
for scalable computing that is co-located with data that we
have uploaded to and maintain in the cloud.

A. System Architecture

The system can be broken down into three distinct compo-
nents, outlined in Fig. 1:

1) An interface for computing. We use the Jupyter
ecosystem, a JupyterHub deployment based on the
zero-to-jupyterhub project that spawns Jupyter
notebook [13], [14] servers for authenticated users. A
Jupyter notebook server provides a web-interface to

Fig. 1: Underlying the analysis platform are three components:
1) An interface to computation (Jupyter), 2) an engine for
distributed computing (Apache Spark), and 3) a scalable
storage solution for very large data (Amazon S3).

interactively run code on a remote machine alongside
a set of pre-installed software libraries.

2) A scalable analytics engine. We use Apache Spark [15],
an industry standard tool for distributed computing.

3) A scalable storage solution. We use Amazon Web Ser-
vice’s (AWS) Simple Storage Solution (S3). Amazon S3
is a managed object store that can store arbitrarily large
data volumes and scale to an arbitrarily large number of
requests for this data.

Each of these components are largely disconnected from one
another and can be mixed and matched with other drop-
in solutions.2 At a low-level, each of these components are
comprised of simple processes communicating with each other
through an API over a network. This means that each solution
for (1), (2), and (3) is largely agnostic to the choice of running
on a bare-metal machine, inside a virtual machine (VM), inside
a Linux container, or using a managed Cloud service as long
as each component is properly networked.

In our particular system, we use Kubernetes to manage
scheduling of the JupyterHub/Jupyter notebook and Spark
processes inside of Docker containers. Kubernetes orches-
trates scheduling of Docker containers with specific resource
requests (among other scheduling constraints) across a set
of networked computers (a cluster of bare-metal or virtual
machines). We use the managed AWS Elastic Kubernetes
Service (EKS) which provisions for us a fully-managed Ku-
bernetes master node. Independent of EKS, we have a set of
managed virtual machines provisioned through AWS Elastic
Compute Cloud (EC2) on which the Kubernets master can
schedule containers. The Kubernetes Cluster Autoscaler3, an
optional add-on to Kubernetes, can automatically scale the
cluster of VMs up when there are Docker containers that

2Dask is a competing drop-in for Apache Spark that scales Python code
natively. A Lustre file system could be a drop-in for Amazon S3. Amazon
EFS, a managed and scalable network filesystem, is also an option.

3https://github.com/kubernetes/autoscaler
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cannot be scheduled without more compute resources and can
scale the cluster down when there are VMs that are under-
utilized. Both JupyterHub4 and Apache Spark5 have built-in
support for scheduling Jupyter notebook servers and Spark
executor processes as containers running on Kubernetes. In
addition, Kubernetes has built-in support for provisioning of
cloud resources such as virtual machines, load balancers and
storage devices in a cloud-agnostic way; the system we’ve built
could easily be transferred to a different cloud provider or to
any on-premises computing center that is running a supported
version of Kubernetes.

Figure 2 shows the state of the Kubernetes cluster during
normal usage of the platform along with the pathway of API
interactions that occur as a user interacts with the system. A
user gains access to the system through a JupyterHub, which
is a log-in portal and proxy to one or more managed Jupyter
notebook servers. The spawned notebook server can be run
on any of the virtual machines rented from the cloud provider
as long as these machines are networked to the JupyterHub
server and the Kubernetes cluster. A proxy forwards external
authenticated requests from the internet to a user’s notebook
server. Users can use the Apache Spark software, which is
pre-installed on their server, to create a Spark cluster using
the Spark on Kubernetes API.

B. Computing Interface: JupyterHub and Jupyter Notebooks

The Jupyter notebook server launches with a set of pre-
installed software packages. Notably, the server has Apache
Spark installed with Python bindings along with the Astron-
omy eXtensions for Spark (AXS; see Section II-C) that is
configured to both access data stored in the cloud and have
permissions to create workloads on the Kubernetes cluster.
When creating a Spark cluster to query and analyze data, the
user has the choice to use the resources of their notebook
server (a local Spark cluster) or use the underlying Kubernetes
cluster to use additional, potentially larger, compute resources
(a distributed Spark cluster). In either case, computation is
performed close to the data since datasets are stored on S3 (see
Section II-D) in the same region as the notebook servers. When
the user wishes to scale their analyses to more computers, they
only need to switch their Spark cluster to use the Kubernetes
API and include a few extra configurations. When requests
are made for more resources, the Kubernetes cluster has the
capability to automatically rent more virtual machines from
the cloud provider to accommodate the increased workload.

C. Distributed Computing: Apache Spark and the Astronomy
eXtensions for Spark

A key backend element of the described platform is the
Astronomy eXtensions for Spark (AXS; [16]). Building on
capabilities present in Spark, AXS aims to enable querying and
analyzing almost arbitrarily large astronomical catalogs using

4through the development of the KubeSpawner (https://jupyterhub-
kubespawner.readthedocs.io/en/latest/spawner.html) and Zero-to-JupyterHub
project (https://zero-to-jupyterhub.readthedocs.io/)

5https://spark.apache.org/docs/latest/running-on-kubernetes.html

Fig. 2: A diagram of the essential components of the Ku-
bernetes cluster when the science platform is in use. Each
box represents a single Kubernetes Pod scheduled on the
cluster. The colored paths and letter markers indicate the
pattern of API interactions that occur when users interact with
the system. (a) shows a user connecting to the JupyterHub
from the internet. The JupyterHub creates a notebook server
(jupyter-user-1) for the user (b). The user creates a
Spark cluster using their notebook server as the location
for the Spark driver process (c). Scheduled Spark executor
Pods connect back to the Spark driver process running in the
notebook server (d). In the background, the Kubernetes cluster
autoscaler keeps track of the scheduling status of all Pods (e).
At any point in (a)-(d), if a Pod cannot be scheduled due to
a lack of cluster resources, the cluster autoscaler will request
more machines from AWS to meet that need (f).

familiar Python/AstroPy concepts, DataFrame APIs, and SQL
statements. We achieve this by i) adding support to Spark for
efficient on-line positional cross-matching and ii) supplying a
Python library supporting commonly-used operations for as-
tronomical data analysis. To support scalable cross-matching,
we developed a variant of the ZONES algorithm [17] capable
of operating in distributed, shared-nothing architecture. We
couple this to a data partitioning scheme that enables fast
catalog cross-matching and handles the data skew often present
in deep all-sky datasets. Using AXS we were able to perform
an on-the-fly cross-match of Gaia DR2 (1.8 billion rows) and
AllWise (900 million rows) datasets in ∼30 seconds. The
cross-match and other often-used functionalities are exposed
to the end users through an easy-to-use Python API, making
this performant algorithm accessible to domain scientists.

D. Scalable Storage: Datasets Stored in S3

We store data on Amazon S3 in Apache Parquet format, a
compressed columnar data storage format optimized for very
fast reads of large tables. The columnar nature and partitioning
of the files means that one can obtain a subset of one or more
columns of a table without scanning through all of the files.
There are monetary costs associated with both storing and
accessing the data in S3, however costs are minimized by
restricting data access to the same AWS region where the data
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are stored. Amazon S3 provides scalable, simultaneous access
to the data through simple GET/PUT API calls. Very high
throughput can be achieved at the terabit-per-second level by
optimizing storage access patterns and scaling requests across
very many machines.6

III. CASE STUDY: A GATEWAY FOR ZTF DATASET
ANALYSIS

We test the ability of this platform to enable large-scale
analysis by having a group of domain scientists use it to search
for Boyajian star [18] analogs in the ZTF dataset, a ∼ 4 TB
catalog describing light curves of ∼ 3 billion objects. We note
that an upcoming paper will fully describe the results of this
project; here we limit ourselves to aspects necessary for the
validation of the analysis system.

The main method for Boyajian-analog searches relies on
querying and filtering large volumes of ZTF light curves using
AXS and Apache Spark in search of dimming events in the
light curves. These dimming events are a period of time in the
light curve when the brightness of the star dims significantly.
After filtering of the data, the group created a set of User-
Defined Functions (UDFs) for model fitting that wraps the
optimization library from the scipy [19] package. These
UDFs are applied to the filtered lightcurves to parallelize
least-squared fitting routines of various models to the dipping
events. Figure 3 shows an outline of this science process using
AXS.

The use of Apache Spark speeds up queries, filtering, and
fitting of the data tremendously when deployed in a distributed
environment. The group members used a Jupyter notebook on
our platform to allocate a Spark cluster consisting of 96 EC2
instances. Each instance had access to 8 threads running on
an AMD EPYC processor with 32 GiB of RAM, a cluster
with 768 threads and 3,072 GiB of RAM. We used the Spark
cluster to complete a complex filtering task on the full 4 TB
ZTF data volume in ∼ three hours. The underlying system
was able to scale to full capacity within minutes, and scale
down once the demanding query was completed just as fast,
providing extreme levels of parallelism at minimal cost. The
total cost over the time of the query was ∼ $100.

This same complex query was previously performed on a
large shared-memory machine at the University of Washington
with a single AMD EPYC processor with 96 threads, 1,024
GiB of RAM, and with the dataset stored on directly connected
SSDs. This query previously took a full two days to execute
on this hardware in comparison to the ∼ three hours on the
cloud based science platform. Performing an analysis of this
scale would not be feasible if performed on a user’s laptop
using data queried over the internet from the ZTF archive.

The group was able to benefit from the extreme parallelism
afforded by Spark without investing significant time writing
Spark-specific code. The majority of coding time was spent
developing science-motivated code/logic to detect, describe,

6This is detailed in the S3 documentation: https://docs.aws.amazon.com/
AmazonS3/latest/dev/optimizing-performance.html

Fig. 3: An example analysis (boiled down to two lines) that
finds light curves in the ZTF dataset with a dimming event. (1)
shows how the ZTF dataset is loaded as a Spark DataFrame
(df), (2) shows the product of filtering light curves for dim-
ming events, and (3) shows the result of fitting a model to the
remaining light curves. This process exemplifies that analyses
can often be represented as a filtering and transformation of
a larger dataset, a process that Spark can easily execute in
parallel.

and model dipping events within familiar Python UDFs and
using familiar Python libraries. In alternative systems that
provide similar levels of parallelism, such as HPC systems
based on batch scheduling, a user would typically have to
spend significant time altering their science code to conform
with underlying software that enables their code to scale. For
example, they may spend significant time re-writing their code
in a way that can be submitted to a batch scheduler like
PBS/Slurm.

A. Additional Scaling Tests

Additional scaling tests verify the performance of our sys-
tem. Figure 4 shows the runtime of a simple Spark query,
a sum of the values of a single column of the ZTF dataset,
as a function of the number of cores allocated to the Spark
cluster. We observe runtime scaling of ∼ 1/#Cores, which is
expected given this simple query is embarrassingly parallel in
the map-reduce framework underlying Spark.

IV. DISCUSSION

The scale of future datasets and the demand for large-
scale and complex analyses poses significant challenges to the
“subset-download-analyze” paradigm common today. Rather
than downloading (now large) subsets, there are strong argu-
ments to “bring the code to the data” and remotely perform
next-to-the-data analysis via science platforms such as the one
described in this paper (also see [20]). But this would place
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Fig. 4: The runtime scaling of a simple Spark query. Black
dots show average runtimes with 1σ errorbars. Overplotted is
the expected runtime scaling of ∼ 1/#Cores.

new demands on astronomical archives: the kinds of analyses
and the size of the community to be supported would require
petascale-level end-user computing resources to be deployed
at archive sites.

An alternative may be to consider migrating away from
the traditional on-premises solutions and towards the manage-
ment of large datasets using cloud-hosted industry-standard
distributed frameworks accessed through web-based remote
interfaces and APIs. This shift could be dovetailed with a de-
facto physical co-location of datasets on (public or private)
cloud resources. This would have the benefit of making joint
whole-dataset analyses possible.

Such cloud-native approaches offer tremendous benefits to
both archives and researchers: elasticity and cost effectiveness,
scalability of processing, shareability of input datasets and
results, as well as increased reproducibility. In this work
we’ve built, deployed, and demonstrated the usefulness and
feasibility of one of these systems.

ACKNOWLEDGMENT

The authors acknowledge the support from the University
of Washington College of Arts and Sciences, Department of
Astronomy, and the DiRAC Institute. The DiRAC Institute
is supported through generous gifts from the Charles and
Lisa Simonyi Fund for Arts and Sciences and the Washington
Research Foundation. M. Jurić wishes to acknowledge the
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